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1. Introduction

The term episodic memory refers to our ability to recall previously experienced events, and to

recognize things as having been encountered previously. Over the past several decades, research

on the neural basis of episodic memory has increasingly come to focus on three structures:

• The hippocampus supports recall of specific details from previously experienced events (for

neuroimaging evidence, see, e.g., Davachi, Mitchell, & Wagner, 2003; Ranganath, Yoneli-

nas, Cohen, Dy, Tom, & D’Esposito, 2003; Eldridge, Knowlton, Furmanski, Bookheimer, &

Engel, 2000; Dobbins, Rice, Wagner, & Schacter, 2003; for a review of relevant lesion data,

see Aggleton & Brown, 1999).

• Perirhinal cortex computes a scalar familiarity signal that discriminates between studied

and nonstudied items (for neuroimaging evidence, see, e.g., Gonsalves, Kahn, Curran, Nor-

man, & Wagner, 2005; Henson, Cansino, Herron, Robb, & Rugg, 2003; Brozinsky, Yoneli-

nas, Kroll, & Ranganath, 2005; for neurophysiological evidence, see, e.g., Li, Miller, &

Desimone, 1993; Xiang & Brown, 1998; for evidence that perirhinal cortex can support near-

normal levels of familiarity-based recognition on its own, after focal hippocampal damage,

see, e.g., Yonelinas, Kroll, Quamme, Lazzara, Sauve, Widaman, & Knight, 2002; Fortin,

Wright, & Eichenbaum, 2004; but see, e.g., Manns, Hopkins, Reed, Kitchener, & Squire,

2003 for an opposing viewpoint).

• Prefrontal cortex plays a critical role in memory targeting: In situations where the bottom-up

retrieval cue is not sufficiently specific to trigger activation of memory traces in the medial

temporal lobe, prefrontal cortex acts to flesh out the retrieval cue, by actively maintaining ad-

ditional information that specifies the to-be-retrieved episode (for reviews of how prefrontal

cortex contributes to episodic memory, see Simons & Spiers, 2003; Fletcher & Henson,

2001; Shimamura, 1994; Schacter, 1987).
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While there is general agreement about the roles of the three structures mentioned above, there

is less agreement about how (mechanistically) these structures enact the roles specified above. This

chapter reviews two kinds of models: biologically-based models that are meant to address how

the neural structures mentioned above contribute to recognition and recall; and abstract models

that try to describe the mental algorithms that support recognition and recall judgments, without

specifically addressing how these algorithms might be implemented in the brain.

Weight-based vs. activation-based memory mechanisms

Within the realm of biologically-based episodic memory models, one can make a distinction

between weight-based and activation-based memory mechanisms (O’Reilly & Munakata, 2000).

Weight-based memory mechanisms support recognition and recall by making lasting changes to

synaptic weights at study. Activation-based memory mechanisms support recognition and recall of

an item by actively maintaining the pattern of neural activity elicited by the item during the study

phase. Activation-based memory mechanisms can support recognition and recall after short delays.

However, our ability to recognize and recall stimuli after longer delays depends on changes to

synaptic weights. This chapter primarily focuses on weight-based memory mechanisms, although

Section 4 discusses interactions between weight-based and activation-based memory mechanisms.

Outline

Section 2 of the chapter provides an overview of biological models of episodic memory, with

a special focus on the Complementary Learning Systems model (McClelland, McNaughton, &

O’Reilly, 1995; Norman & O’Reilly, 2003). Section 3 reviews abstract models of episodic mem-

ory. Section 4 discusses how both abstract and biological models have been extended to address

temporal context memory: our ability to focus retrieval on a particular time period, to the exclusion

of others. This section starts by describing the abstract Temporal Context Model (TCM) devel-

oped by Howard and Kahana (2002). The remainder of Section 4 discusses how temporal context
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memory can be instantiated in neural systems.

2. Biologically-based models of episodic memory

The first part of this section reviews the Complementary Learning Systems (CLS) model (Mc-

Clelland et al., 1995) and how it has been applied to understanding hippocampal and neocortical

contributions to episodic memory (Norman & O’Reilly, 2003). Section 2.2 discusses some alter-

native views of how neocortex contributes to episodic memory.

2.1. The Complementary Learning Systems model

The CLS model incorporates several widely-held ideas about the division of labor between hip-

pocampus and neocortex that have been developed over many years by many different researchers

(e.g., Scoville & Milner, 1957; Marr, 1971; Grossberg, 1976; O’Keefe & Nadel, 1978; Teyler &

Discenna, 1986; McNaughton & Morris, 1987; Sherry & Schacter, 1987; Rolls, 1989; Suther-

land & Rudy, 1989; Squire, 1992; Eichenbaum, Otto, & Cohen, 1994; Treves & Rolls, 1994;

Burgess & O’Keefe, 1996; Wu, Baxter, & Levy, 1996; Moll & Miikkulainen, 1997; Hasselmo &

Wyble, 1997; Aggleton & Brown, 1999; Yonelinas, 2002; Becker, 2005). According to the CLS

model, neocortex forms the substrate of our internal model of the structure of the environment. In

contrast, hippocampus is specialized for rapidly and automatically memorizing patterns of cortical

activity, so they can be recalled later (based on partial cues). The model posits that neocortex learns

incrementally; each training trial results in relatively small adaptive changes in synaptic weights.

These small changes allow cortex to gradually adjust its internal model of the environment in re-

sponse to new information. The other key property of neocortex (according to the model) is that

it assigns similar (overlapping) representations to similar stimuli. Use of overlapping representa-

tions allows cortex to represent the shared structure of events, and therefore makes it possible for

cortex to generalize to novel stimuli based on their similarity to previously experienced stimuli.
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In contrast, the model posits that hippocampus assigns distinct, pattern separated representations

to stimuli, regardless of their similarity. This property allows hippocampus to rapidly memorize

arbitrary patterns of cortical activity without suffering unacceptably high (catastrophic) levels of

interference.

Applying CLS to episodic memory

CLS was originally formulated as a set of high-level principles for understanding hippocampal

and cortical contributions to memory. More recently, Norman and O’Reilly (2003) implemented

hippocampal and cortical networks that adhere to CLS principles, and used the models to simulate

episodic memory data. Learning was implemented in these simulations using a simple Hebbian

rule, called instar learning by Grossberg (1976) and Conditional Principal Components Analysis

(CPCA) Hebbian learning by O’Reilly and Munakata (2000):

∆wij = εyj(xi − wij) (1)

In this equation, xi is the activation of sending unit i, yj is the activation of receiving unit j,

wij is the strength of the connection between i and j, and ε is the learning rate parameter. This

rule has the effect of strengthening connections between active sending and receiving neurons, and

weakening connections between active receiving neurons and inactive sending neurons.

In both the hippocampal and cortical networks, to-be-memorized items are represented by pat-

terns of excitatory activity that are distributed across multiple units (simulated neurons) in the

network. Excitatory activity spreads from unit to unit via positive-valued synaptic weights. The

overall level of excitatory activity in the network is controlled by a feedback inhibition mechanism

that samples the amount of excitatory activity in a particular subregion of the model, and sends

back a proportional amount of inhibition (O’Reilly & Munakata, 2000).

The CLS model instantiates the idea (mentioned in the Introduction) that hippocampus con-

tributes to recognition memory by recalling specific studied details, and that cortex contributes
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Figure 1: Diagram of the CLS hippocampal network. The hippocampal network links input patterns in
entorhinal cortex (EC) to relatively non-overlapping (pattern-separated) sets of units in region CA3. The
dentate gyrus (DG) serves to facilitate pattern separation in region CA3. Recurrent connections in CA3 bind
together all of the units involved in representing a particular EC pattern; the CA3 representation is linked
back to EC via region CA1. Learning in the CA3 recurrent connections, and in projections linking EC to
CA3 and CA3 to CA1, makes it possible to recall entire stored EC patterns based on partial cues.

to recognition by computing a scalar familiarity signal. In this respect, the CLS model belongs

to a long tradition of dual-process theories of recognition memory that posit conjoint contribu-

tions of recall and familiarity to recognition performance (see Yonelinas, 2002 for a review of

dual-process theories). The next two sections provide an overview of the CLS hippocampal and

cortical networks, and how they have been applied to episodic memory data. For additional details

regarding the CLS model (equations and key model parameters) see Appendix A; also, a working,

documented version of the CLS model can be downloaded from http://compmem.princeton.edu/.

CLS model of hippocampal recall

The job of the CLS hippocampal model is to memorize patterns of activity in entorhinal cor-

tex (EC), the neocortical region that serves as an interface between hippocampus and the rest of

neocortex, so these patterns can be retrieved later in response to partial cues. The architecture of

the model (illustrated in Figure 1) reflects a broad consensus regarding key anatomical and physio-
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logical characteristics of different hippocampal subregions (Squire, Shimamura, & Amaral, 1989),

and how these subregions contribute to the overall goal of memorizing cortical patterns. While the

fine-grained details of other hippocampal models may differ slightly from the CLS model, the “big

picture” story (reviewed below) is remarkably consistent across models (Rolls, 1989; Hasselmo &

Wyble, 1997; Meeter, Murre, & Talamini, 2004; Becker, 2005).

In the brain, EC is split into two layers, a superficial layer that primarily sends input into the hip-

pocampus, and a deep layer that primarily receives output from the hippocampus (Witter, Wouter-

lood, Naber, & Van Haeften, 2000); in the model, these layers are referred to as EC in and EC out.

The part of the model corresponding to the hippocampus proper is subdivided into different layers,

corresponding to different anatomical subregions of the hippocampus. At encoding, the hippocam-

pal model binds together sets of co-occurring neocortical features (corresponding to a particular

episode) by linking co-active units in EC in to a cluster of units in region CA3. These CA3 units

serve as the hippocampal representation of the episode. In addition to strengthening feedforward

connections between EC in and CA3, recurrent connections between active CA3 units are also

strengthened. To allow for recall, active CA3 units are linked back to the original pattern of cor-

tical activity via region CA1. Like CA3, region CA1 also contains a representation of the input

pattern. However, unlike the CA3 representation, the CA1 representation is invertible — if an

item’s representation is activated in CA1, well-established connections between CA1 and EC out

allow activity to spread back to the item’s representation in EC out. Thus, CA1 serves to trans-

late between sparse representations in CA3 and more overlapping representations in EC (for more

discussion of this issue, see McClelland & Goddard, 1996 and O’Reilly, Norman, & McClelland,

1998).

The projections described above are updated using the CPCA Hebbian learning rule during the

study phase of the experiment (except for connections between EC and CA1, which are pre-trained

to form an invertible mapping). At test, when a partial version of a stored EC pattern is presented to

the hippocampal model, the model is capable of reactivating the entire CA3 pattern corresponding
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to that item because of learning (in feedforward and recurrent connections) that occurred at study.

Activation then spreads from the item’s CA3 representation back to the item’s EC representation

(via CA1). In this manner, the hippocampal model manages to retrieve a complete version of the

EC pattern in response to a partial cue. This process is typically referred to as pattern completion.

To minimize interference between episodes, the hippocampal model has a built-in bias to assign

relatively non-overlapping (pattern separated) CA3 representations to different episodes. Pattern

separation occurs because of strong feedback inhibition in CA3, which leads to sparse representa-

tions: In the hippocampal model, only the top 4% of units in CA3 (ranked in terms of excitatory

input) are active for any given input pattern. The fact that CA3 units are hard to activate reduces

the odds that a given unit will be active for any two input patterns, thereby leading to pattern

separation.

Pattern separation in CA3 is greatly facilitated by the dentate gyrus (DG). Like CA3, the DG

also receives a projection from EC in. The DG has even sparser representations than CA3, and has

a very strong projection to CA3 (the mossy fiber pathway). In effect, the DG can be viewed as se-

lecting a (nearly) unique representation for each stimulus, and then forcing that representation onto

CA3 via the mossy fiber pathways (see O’Reilly & McClelland, 1994 for a much more detailed

treatment of pattern separation in the hippocampus, and the role of the dentate gyrus in facilitating

pattern separation). Recently, Becker (2005) has argued that neurogenesis in DG plays a key role

in fostering pattern separation: Inserting new neurons and connections into DG ensures that, if two

similar patterns that are fed into DG on different occasions, they will elicit distinct patterns of DG

activity (because the DG connectivity matrix is different on the first vs. second occasion).

To apply the hippocampal model to recognition, Norman and O’Reilly (2003) compared the

test cue (presented on the EC in layer) to the pattern of retrieved information (activated over the

EC out layer). When recalled information matches the test cue, this constitutes evidence that the

item was studied; conversely, mismatch between recalled information and the test cue constitutes
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evidence that the test cue was not studied (e.g., study “rats”; test “rat”; if the hippocampal model

recalls that “rats”-plural was studied, not “rat”-singular, this can serve as grounds for rejection of

“rat”).

Optimizing the dynamics of the hippocampal model As discussed by O’Reilly and McClelland

(1994), the greatest computational challenge faced by the hippocampal model is dealing with the

inherent trade-off between pattern separation and pattern completion. Pattern separation reduces

the extent to which storing a new memory trace damages other, previously stored memory traces.

However, this tendency to assign distinct hippocampal representations to similar EC inputs can

interfere with pattern completion at retrieval: It is very uncommon for retrieval cues to exactly

match stored patterns; if there is a mismatch between the retrieval cue and the to-be-recalled trace,

pattern separation mechanisms might cause the cue to activate a different set of CA3 units than

the original memory trace (so retrieval will not occur). Hasselmo and colleagues (e.g., Hasselmo,

1995; Hasselmo, Wyble, & Wallenstein, 1996; Hasselmo & Wyble, 1997) have also pointed out that

pattern completion can interfere with pattern separation: If, during storage of a new memory, the

hippocampus recalls related memories, such that both old and new memories are simultaneously

active at encoding, these memories will become even more tightly associated (due to Hebbian

learning between co-active neurons) and thus run the risk of blending together.

To counteract these problems, Hasselmo and others have argued that the hippocampus has an

encoding mode, where the functional connectivity of the hippocampus is optimized for storage

of new memories, and a retrieval mode, where the functional connectivity of the hippocampus is

optimized for retrieval of stored memory traces that match the current input.

Two of the most prominent optimizations discussed by Hasselmo are:

• The strength of CA3 recurrents should be larger during retrieval mode than encoding mode.

Increasing the strength of recurrent connections facilitates pattern completion.

• During encoding mode, the primary influence on CA1 activity should be the current input
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pattern in EC. During retrieval mode, the primary influence on CA1 activity should be the

retrieved (“completed”) pattern in CA3.

For discussion of these optimizations as well as others (relating to adjustments in hippocampal

learning rates) see Hasselmo et al. (1996). 1

Hasselmo originally proposed that mode-setting was accomplished by varying the concentration

of the neuromodulatory chemical acetylcholine (ACh). Hasselmo and Wyble (1997) present a

computational model of this process. According to this model, presenting a novel pattern to the

hippocampus activates the basal forebrain, which (in turn) releases ACh into the hippocampus,

triggering encoding mode (see Meeter et al., 2004 for a similar model). For physiological evidence

that ACh triggers the key properties of encoding mode (as listed above), see Hasselmo, Schnell,

and Barkai (1995) and Hasselmo and Schnell (1994).

More recently, Hasselmo and Fehlau (2001) have argued that ACh can not be the only mech-

anism of mode-setting in the hippocampus, because the temporal dynamics of ACh release are

too slow (on the order of seconds) — by the time that ACh is released, the to-be-encoded stim-

ulus may already be gone. Hasselmo and Fehlau (2001) argue that, in order to support more

responsive mode-setting, the ACh-based mechanism discussed above is supplemented by another

mechanism that leverages hippocampal theta oscillations (rhythmic changes in the local field po-

tential, at approximately 4-8 Hz in humans). Specifically, they argue that oscillatory changes in

the concentration of the neurotransmitter GABA cause the hippocampus to flip back and forth

between encoding and retrieval modes several times per second — as such, each stimulus is pro-

cessed (several times) both as a new stimulus to be encoded, and as a “reminder” to retrieve other

stimuli. Hasselmo, Bodelon, and Wyble (2002) present a detailed computational model of this

theta-based mode setting; for physiological evidence in support of this model see Wyble, Linster,

1Yet another optimization, not discussed by Hasselmo, would be to reduce the influence of the dentate gyrus on
CA3 at retrieval. As mentioned earlier, the DG’s primary function in the CLS model is to foster pattern separation.
Thus, reducing the influence of the DG at retrieval should reduce pattern separation and — through this — boost
pattern completion (see Becker, 2005 for additional discussion of this point).
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Figure 2: Illustration of the sharpening of hidden (perirhinal) layer activity patterns in a miniature version of
the CLS cortical model. (a) shows the network prior to sharpening; perirhinal activity (more active = lighter
color) is relatively undifferentiated. (b) shows the network after CPCA Hebbian learning and inhibitory
competition produce sharpening; a subset of the units are strongly active, while the remainder are inhibited.

and Hasselmo (2000).

In its current form, the CLS hippocampal model only incorporates a very crude version of mode-

setting (such that EC is the primary influence on CA1 during study of new items, and CA3 is the

primary influence on CA1 during retrieval). Incorporating the other mode-related optimizations

mentioned above (e.g., varying the strength of CA3 recurrents to facilitate encoding vs. retrieval)

should greatly improve the efficacy of the CLS hippocampal model.

CLS model of cortical familiarity

The CLS cortical model consists of an input layer (corresponding to lower regions of the cortical

hierarchy) which projects in a feedforward fashion to a hidden layer (corresponding to perirhinal

cortex). As mentioned earlier, the main function of cortex is to extract statistical regularities in

the environment; the two-layer CLS cortical network (where “perirhinal” hidden units compete to

encode regularities that are present in the input layer) is meant to capture this idea in the simplest

possible fashion.

Because the cortical model uses a small learning rate, it is not capable of pattern completion

following limited exposure to a stimulus. However, it is possible to extract a scalar signal from

the cortical model that reflects stimulus familiarity: In the cortical model, as items are presented

repeatedly, their representations in the upper (perirhinal) layer become sharper: Novel stimuli

weakly activate a large number of perirhinal units, whereas previously presented stimuli strongly

activate a relatively small number of units. Sharpening occurs in the model because Hebbian
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learning specifically tunes some perirhinal units to represent the stimulus. When a stimulus is first

presented, some perirhinal units, by chance, will respond more strongly to the stimulus than other

units. These “winning” units get tuned by CPCA Hebbian learning to respond even more strongly

to the item then next time it is presented; this increased response triggers an increase in feedback

inhibition to units in the layer, resulting in decreased activation of the “losing” units. This latter

property (whereby some initially-responsive units drop out of the stimulus representation as it is

repeated) is broadly consistent with the neurophysiological finding that some perirhinal neurons

show decreased responding as a function of stimulus familiarity (e.g., Xiang & Brown, 1998; Li

et al., 1993); see Section 2.2 (Alternative models of perirhinal familiarity), below, for additional

discussion of single-cell-recording data from perirhinal cortex. Figure 2 illustrates this sharpening

dynamic.2 In the Norman and O’Reilly (2003) paper, cortical familiarity was operationalized

by reading out the activation of the k winning units in the perirhinal layer (where k is a model

parameter that defines the maximum number of units that are allowed to be strongly active at

once), although other methods of operationalizing familiarity are possible.

Because there is more overlap between representations in the cortical model vs. the hippocam-

pal model, the familiarity signal generated by the cortical model has very different operating char-

acteristics than the recall signal generated by the hippocampal model: In contrast to hippocampal

recall, which only occurs when the test cue is very similar to a specific studied item, the corti-

cal familiarity signal tracks — in a graded fashion — the amount of overlap between the test cue

and the full set of studied items. This sensitivity to “global match” is one of the most critical

psychological properties of the familiarity signal (for behavioral evidence that familiarity tracks

global match, see, e.g., Brainerd & Reyna, 1998; Koutstaal, Schacter, & Jackson, 1999; Shiffrin,

Huber, & Marinelli, 1995; Criss & Shiffrin, 2004; see also Section 3 below for discussion of how

abstract models implement a “global match” familiarity process).

2For additional discussion of how competitive learning can lead to sharpening, see, e.g., Grossberg, 1986, Section
23, and Grossberg & Stone, 1986, Section 16.
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Importantly, while the Norman and O’Reilly (2003) model focuses on the contribution of

perirhinal cortex in familiarity discrimination, the CLS framework is entirely compatible with

other theories that have emphasized the role of perirhinal cortex in representing high-level con-

junctions of object features (e.g., Bussey, Saksida, & Murray, 2002; Bussey & Saksida, 2002;

Barense, Bussey, Lee, Rogers, Davies, Saksida, Murray, & Graham, 2005). The CLS cortical net-

work performs competitive learning of object features in exactly the manner specified by these

other models; the “sharpening” dynamic described above (which permits familiarity discrimina-

tion) is a byproduct of this feature extraction process. Another important point is that, according

to the CLS model, perirhinal cortex works just like the rest of cortex. Its special role in familiarity

discrimination (and learning of high-level object conjunctions) is attributable to its position at the

top of the cortical hierarchy, which allows it to associate a wider range of features, and also allows

it to respond differentially to novel combinations of these features (when discriminating between

old and new items on a recognition test). For additional discussion of this point, see Norman and

O’Reilly (2003).

Representative prediction from the CLS model

Norman and O’Reilly (2003) showed how, taken together, the hippocampal network and cortical

network can explain a wide range of behavioral findings from recognition and recall list-learning

experiments. Furthermore, because the CLS model maps clearly onto the brain, it is possible to use

the model to address neuroscientific data in addition to (purely) behavioral data. Here, we discuss

a representative model prediction, relating to how target-lure similarity and recognition test format

should interact with hippocampal damage.

The CLS model predicts that cortex and hippocampus can both support good recognition perfor-

mance when lures are not closely related to studied items. However, when lures are closely related

to studied items, hippocampally-based recognition performance should be higher than cortically-

based recognition performance, because of the hippocampus’ ability to assign distinct represen-
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tations to similar stimuli, and its ability to reject lures when they trigger recall that mismatches

the test cue. The model also predicts that effects of target-lure similarity should interact with test

format. Most recognition tests use a yes-no (YN) format where test items are presented one at a

time, and subjects are asked to label them as old or new. The model predicts that cortex should

perform very poorly on YN tests with related lures (because the distributions of familiarity scores

associated with studied items and related lures overlap strongly). However, the model predicts

that cortex should perform much better when given a forced choice between studied items and

corresponding related lures (e.g., “rat” and “rats” are presented simultaneously, and subjects have

to choose which item was studied). In this situation, the model predicts that the mean difference

in familiarity between the studied item and the related lure will be small, but the studied item

should reliably be slightly more familiar than the corresponding related lure (thereby allowing for

correct responding; see Hintzman, 1988 for additional discussion of this idea). Taken together,

these predictions imply that patients with hippocampal damage should perform very poorly on YN

tests with related lures. However, the same patients should show relatively spared performance on

tests with unrelated lures, or when they are given a forced choice between targets and correspond-

ing related lures (since cortex can pick up the slack in both cases). Holdstock, Mayes, Roberts,

Cezayirli, Isaac, O’Reilly, and Norman (2002) and Mayes, Isaac, Downes, Holdstock, Hunkin,

Montaldi, MacDonald, Cezayirli, and Roberts (2001) tested these predictions in a patient with fo-

cal hippocampal damage and obtained the predicted pattern of results; for additional evidence in

support of these predictions, see also Westerberg, Paller, Weintraub, Mesulam, Holdstock, Mayes,

and Reber (2006).

Memory decision-making: A challenge for recognition memory models

There is one major way in which the CLS model is presently underspecified: namely, how to

combine the contributions of hippocampal recall and cortical familiarity when making recognition

decisions. This problem is shared by all dual-process recognition memory models, not just CLS.
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Norman and O’Reilly (2003) treat recognition decision-making as a “black box” that is external

to the network model itself (i.e., the decision process is not itself simulated by a neural network).

This raises two issues: First, at an abstract level, what algorithm should be implemented by the

black box? Second, how could this algorithm be implemented in network form? In their com-

bined cortico-hippocampal simulations, Norman and O’Reilly (2003) used a simple rule where

test items were called “old” if hippocampal recall exceeded a certain value, otherwise, the decision

was made based on familiarity (Jacoby, Yonelinas, & Jennings, 1997). This reflects the common

assumption that recall is more diagnostic than familiarity. However, the diagnosticity of both re-

call and familiarity varies from situation to situation. For example, Norman and O’Reilly (2003)

discuss how recall of unusual features is more diagnostic than recall of common features. Also,

familiarity is less diagnostic when lures are highly similar to studied items, vs. when lures are

less similar to studied items. Ideally, the decision-making algorithm would be able to dynamically

weight the evidence provided by recall of a particular feature (relative to familiarity) based on its

diagnosticity.

However, even if subjects manage to successfully compute the diagnosticity of each pro-

cess, there are many reasons why (in a particular situation) subjects might deviate from this

diagnosticity-based weighting. For example, several studies have found that dual-task demands

hurt recall-based responding more than familiarity-based responding (e.g., Gruppuso, Lindsay, &

Kelley, 1997), suggesting that recall-based responding places stronger demands on cognitive re-

sources than familiarity-based responding. If recall-based responding is generally more demanding

than familiarity-based responding, this could cause subjects to under-attend to recall (even when it

is useful). Furthermore, the reward structure of the task will interact with decision weights (e.g.,

if the task places a high premium on avoiding false alarms, subjects might attend relatively more

to recall; see Malmberg & Xu, in press for additional discussion of how subjects weight recall vs.

familiarity).

Finally, in constructing a model of memory decision-making, it is important to factor in more
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dynamical aspects of the decision-making process. In recent years, models of memory decision-

making have started to shift away from simple signal-detection accounts (where a cutoff is ap-

plied to a static memory strength value), toward models that accumulate evidence across time

(see the chapter by Busemeyer & Johnson in this volume). While these dynamical “evidence-

accumulation” models are more complex than models based on signal-detection theory (in the

sense that they have more parameters), several researchers have demonstrated that evidence-

accumulation models can be implemented using relatively simple neural network architectures

(e.g., Usher & McClelland, 2001). As such, the shift to dynamical decision-making models may

actually make it easier to construct a neural network model of memory decision-making processes.

Overall, incorporating a more accurate model of the decision-making process (in terms of how

recall and familiarity are weighted, in terms of temporal dynamics, and in terms of how this pro-

cess is instantiated in the brain) should greatly increase the predictive utility of extant recognition

memory models.

2.2. Alternative models of perirhinal familiarity

While (as mentioned above) the basic tenets of the CLS hippocampal model are relatively un-

controversial, there is much less agreement about whether the CLS cortical model adequately ac-

counts for perirhinal contributions to recognition memory. Recently, the CLS cortical model was

criticized by Bogacz and Brown (2003), on the grounds that it has inadequate storage capacity.

Bogacz and Brown (2003) showed that, when input patterns are correlated with one another, the

model’s capacity for familiarity discrimination (operationalized as the number of studied stimuli

that the network can distinguish from nonstudied stimuli with 99% accuracy) barely increases as

a function of network size; because of this, the model’s capacity (even in a “brain-sized” network)

falls far short of the documented capacity of human recognition memory (e.g., Standing, 1973).

These capacity problems can be traced back to the CPCA Hebbian learning algorithm used

by Norman and O’Reilly (2003). As discussed by Norman, Newman, and Perotte (2005), CPCA
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Hebbian learning is insufficiently judicious in how it adjusts synaptic strengths: It strengthens

synapses between co-active units even if the target memory is already strong enough to support

recall, and it weakens synapses between active receiving units and all sending units that are in-

active at the end of the trial, even if these units did not actively compete with recall of the target

memory. As a result of this problem, CPCA Hebbian learning ends up over-representing features

that are common to all items in the stimulus set, and under-representing features that are specific

to individual items. Insofar as recognition depends on memory for item-specific features (common

features are, by definition, useless for recognition, because they are shared by both studied items

and lures), this tendency for CPCA Hebbian leaning to under-represent item-specific features re-

sults in poor recognition discrimination. In their paper, Bogacz and Brown (2003) also discuss a

Hebbian familiarity discrimination model developed by Sohal and Hasselmo (2000). This model

operates according to slightly different principles than the CLS cortical model, but it shares the

same basic problem (over-focusing on common features) and thus performs poorly with correlated

input patterns.

Given these capacity concerns, it is worth exploring how well other, recently developed models

of perirhinal familiarity discrimination can address these capacity issues, as well as extant neu-

rophysiological and psychological data on perirhinal contributions to recognition memory. Three

alternative models are discussed below: a model developed by Bogacz and Brown (2003) that uses

anti-Hebbian learning to simulate decreased responding to familiar stimuli; a model developed by

Meeter, Myers, and Gluck (2005) that shows decreased responding to familiar stimuli because of

context-driven adaptation effects; and a model developed by Norman, Newman, Detre, and Polyn

(2006b) that probes the strength of memories by oscillating the amount of feedback inhibition.

The anti-Hebbian model

In contrast to the CLS familiarity model, in which familiarity discrimination was a byproduct

of Hebbian feature extraction, the anti-Hebbian model proposed by Bogacz and Brown posits that
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separate neural populations in perirhinal cortex are involved in representing stimulus features (on

the one hand) vs. familiarity discrimination (on the other). Bogacz and Brown (2003) argue that

neurons involved in familiarity discrimination use an anti-Hebbian learning rule, which weakens

the weights from active pre-synaptic neurons to active post-synaptic neurons, and increases the

weights from inactive pre-synaptic neurons. This anti-Hebbian rule causes neurons that initially

respond to a stimulus to respond less on subsequent presentations of that stimulus.

The primary advantage of the anti-Hebbian model over the CLS model is improved capacity.

Whereas Hebbian learning ends up over-representing common features and under-representing

unique features (resulting in poor overall capacity), anti-Hebbian learning biases the network to

ignore common features and to represent what is distinctive or unusual about individual patterns.

Bogacz and Brown (2003) present a mathematical analysis showing that the anti-Hebbian model’s

capacity for familiarity discrimination (given correlated input patterns) is orders of magnitude

higher than the capacity of a model trained with Hebbian learning.

With regard to neurophysiological data: There are several salient differences in the predictions

made by the anti-Hebbian model vs. the CLS cortical model. A foundational assumption of the Bo-

gacz and Brown (2003) model is that neurons showing steady, above-baseline firing vs. decreased

firing (as a function of stimulus repetition) belong to distinct neural populations: The former group

(showing steady responding) is involved in representing stimulus features, whereas the latter group

is involved in familiarity discrimination. This view implies that it should be impossible to find a

neuron that shows steady responding to some stimuli and decreased responding to other stimuli. In

contrast, the CLS cortical model posits that neurons that show steady (above-baseline) or increased

firing to a given stimulus are the neurons that won the competition to represent this stimulus, and

neurons that show decreased firing are the neurons that lost the competition to represent this stim-

ulus. Furthermore, different neurons will win (vs. lose) the competition for different stimuli. Thus,

contrary to the predictions of the Bogacz and Brown (2003) model, it should be possible to find

a neuron that shows steady (or increased) responding to one stimulus (because it won the com-
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petition to represent that stimulus) and decreased responding to another stimulus (because it lost

the competition to represent that stimulus). More data need to be collected in order to test these

predictions.

The Meeter, Myers, & Gluck (2005) model

The Meeter et al. (2005) model uses the same basic Hebbian learning architecture as Norman

and O’Reilly (2003), with two critical changes: First, they added a neural adaptation mechanism

(such that units become harder to activate after a period of sustained activation). Second, they

are more explicit in considering how context is represented in the input patterns. According to

the Meeter et al. (2005) model, if an item is presented in a particular context (e.g., in a particular

room, on a particular computer screen, in a particular font), then the units activated by the item

become linked to the units activated by contextual features. As a result of this item-context linkage,

whenever the subject is in that context (and, consequently, context-sensitive neurons are firing),

the linked item units will receive a small amount of activation. Over time, this low-level input

from contextual features will lead to adaptation in the linked item units, thereby making them less

likely to fire to subsequent repetitions of that item. In the Meeter et al. (2005) model, “context”

is operationalized as a set of input units that receive constant (above-zero) excitation throughout

the experiment; apart from this fact, context features function identically to units that represent the

features of individual items.

This model has several attractive properties with regard to explaining data on single-unit activity

in perirhinal cortex. It can account for the basic decrease in the neural response triggered by

familiar vs. novel stimuli. Moreover, it provides an elegant explanation of why some perirhinal

neurons do not show decreased responding with stimulus repetition. Contrary to the Bogacz and

Brown (2003) idea that neurons showing decreased vs. steady responding come from separate

populations (with distinct learning rules), the Meeter et al. (2005) model explains this difference

in terms of a simple difference in context-sensitivity. Specifically: According to the Meeter et al.
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(2005) model, neurons that receive input from a large number of contextual features will show

decreased responding to repeated stimuli (insofar as these contextual inputs will cause the neuron

to be tonically active, leading to adaptation), whereas neurons that are relatively insensitive to

contextual features will not show decreased responding.

The most salient prediction of the Meeter model is that familiarity should be highly context-

sensitive: Insofar as the strengthened context-item association formed at study is what causes

adaptation, changing context between study and test should eliminate adaptation and thus eliminate

the decrement in responding to previously studied stimuli. This prediction has not yet been tested.

With regard to capacity, the Meeter et al. (2005) model uses the same Hebbian learning mechanism

as the CLS model, so the same capacity issues that were raised by Bogacz and Brown (2003) (with

regard to the CLS model) also apply here.

The oscillating learning algorithm (Norman et al., in press)

In response to the aforementioned problems with CPCA Hebbian learning, Norman et al. (in

press; see also Norman et al., 2005) developed a new learning algorithm that (like CPCA Hebbian

learning) does feature extraction, but (unlike CPCA Hebbian learning) is more judicious in how

it adjusts synapses: It selectively strengthens weak parts of target memories (vs. parts that are

already strong), and selectively punishes strong competitors. The algorithm memorizes patterns in

the following manner:

• First, the to-be-learned (target) pattern is imposed on the network (via external inputs).

• Second, the algorithm identifies weak parts of the target memory by raising feedback inhibi-

tion above baseline. This increase can be viewed as a “stress test” on the target memory. If a

target unit is receiving relatively little collateral support from other target units, such that its

net input is just above threshold, raising inhibition will trigger a decrease in the activation of

that unit. The algorithm then acts to strengthen units that drop out, by increasing connections

coming into these units units from active senders.
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• Third, the algorithm identifies competing memories (non-target memories receiving strong

input) by lowering feedback inhibition below baseline. Effectively, lowering inhibition low-

ers the threshold amount of excitation needed for a unit to become active. If a non-target

unit is just below threshold (i.e., it is receiving strong input, but not quite enough to become

active) lowering inhibition will cause that unit to become active. The algorithm then acts

to weaken units that pop up, by weakening connections coming into these units from active

senders.

Weight change in the model is accomplished via the well-established Contrastive Hebbian

Learning (CHL) equation (Ackley, Hinton, & Sejnowski, 1985; Hinton & Sejnowski, 1986; Hin-

ton, 1989; Movellan, 1990). CHL learning involves contrasting a more desirable state of network

activity (called the plus state) with a less desirable state of network activity (called the minus state).

The CHL equation adjusts network weights to strengthen the more desirable state of network ac-

tivity (so it is more likely to occur in the future) and weaken the less desirable state of network

activity (so it is less likely to occur in the future).

∆wij = ε
(

(X+
i Y +

j ) − (X−

i Y −

j )
)

(2)

In the above equation, Xi is the activation of the presynaptic (sending) unit, Yj is the activation

of the postsynaptic (receiving) unit. The + and − superscripts refer to plus-state and minus-state

activity, respectively. ∆wij is the change in weight between the sending and receiving units, and ε

is the learning rate parameter.

Changes in the strength of feedback inhibition have the effect of creating two kinds of “minus”

states: Raising inhibition creates patterns that have too little activation (because target units drop

out) and lowering inhibition creates patterns that have too much activation (because strong com-

petitor units pop up). As inhibition is oscillated, the CHL equation is applied to states of network

activation, with the normal-inhibition pattern serving as the plus state and the high-inhibition and
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low-inhibition patterns serving as minus states (Norman et al., 2006b).

Because strengthening is limited to weak target features, the oscillating algorithm avoids the

problem of “over-strengthening of common features” that plagues Hebbian learning. Also, the

oscillating algorithm’s ability to selectively punish competitors helps to prevent similar mem-

ories from collapsing into one another: Whenever memories start to blend together, they also

start to compete with one another at retrieval, and the competitor-punishment mechanism pushes

them apart.3 Norman et al. (2006b) discuss how the oscillating algorithm may be implemented in

the brain by neural theta oscillations (insofar as these oscillations involve regular changes in the

strength of neural inhibition, and are present in both cortex and the hippocampus).

Recently, Norman et al. (2005) explored the oscillating algorithm’s ability to do familiarity dis-

crimination. These simulations used a simple two-layer network: Patterns were presented to the

lower part of the network (the input/output layer). The upper part of the network (the hidden layer)

was allowed to self-organize according to the dictates of the learning algorithm. Every unit in the

input/output layer was connected to every input/output unit (including itself) and to every hidden

unit via modifiable, symmetric weights. A familiarity signal can be extracted from this network

by looking at how activation changes when inhibition is raised above its baseline value: Weak (un-

familiar) memories show a larger decrease in activation than strong (familiar) memories. Norman

et al. (2005) tested the network’s ability to discriminate between 100 studied and 100 nonstudied

patterns, where the average pairwise overlap between any two patterns (studied or nonstudied) was

41%. After 10 study presentations, discrimination accuracy was effectively at ceiling (99%). In

this same situation, the performance of the Norman and O’Reilly (2003) CLS familiarity model

(trained with CPCA Hebbian learning) was close to chance. This finding shows that the oscil-

lating algorithm can show good familiarity discrimination in exactly the kind of situation (i.e.,

3Importantly, unlike the CLS hippocampal model described earlier (which automatically enacts pattern separation,
regardless of similarity), the oscillating algorithm is only concerned that memories observe a minimum separation
from one another. So long as this constraint is met, memories in the cortical network simulated here are free to overlap
according to their similarity (thereby allowing the network to enact similarity-based generalization).
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high correlation between patterns) where the CLS familiarity model performs poorly. Although

Norman et al. (2005) have not yet carried out the requisite mathematical analyses, it is quite pos-

sible that the oscillating algorithm’s capacity for supporting familiarity-based discrimination, in

a brain-sized network, will be large enough to account for the vast capacity of human familiarity

discrimination.

3. Abstract models of recognition and recall

In addition to the biologically-based models discussed above, there is a rich tradition of re-

searchers building more abstract computational models of episodic memory. Although there is

considerable diversity within the realm of abstract memory models, most of the abstract models

that are currently being developed share a common set of properties: At study, memory traces are

placed separately in a long-term store; because of this “separate storage” postulate, acquiring new

memory traces does not affect the integrity of previously stored memory traces. At test, the model

computes the match between the test cue and all of the items stored in memory. This item-by-item

match information can be summed across all items to compute a “global match” familiarity signal.

Some abstract models that conform to this overall structure are SAM (Raaijmakers & Shiffrin,

1981; Gillund & Shiffrin, 1984; Mensink & Raaijmakers, 1988), REM (Shiffrin & Steyvers, 1997;

Malmberg, Holden, & Shiffrin, 2004a), MINERVA 2 (Hintzman, 1988), and NEMO (Kahana &

Sekuler, 2002). Some notable exceptions to this general rule include the TODAM model (Mur-

dock, 1993) and the Matrix model (Humphreys, Bain, & Pike, 1989), which store memory traces

in a composite fashion (instead of storing them separately).

One of the most important properties of global matching models is that the match computation

weights multiple matches to a single trace more highly than the same total number of matches,

spread out across multiple memory traces (e.g., a test cue that matches two features of one item

yields a higher familiarity signal than a test cue that matches one feature of each of two items);
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see Clark and Gronlund (1996) for additional discussion of this point. Among other things, this

property gives global matching models the ability to perform associative recognition (i.e., to dis-

criminate pairs of stimuli that were studied together vs. stimuli that were studied separately).

Different models achieve this sensitivity to conjunctions in different ways. For example, in

MINERVA 2, memory traces are vectors where each element is 1 (indicating that a feature is

present), -1 (indicating that the feature is absent), and 0 (indicating that the feature is unknown).

To compute global match, MINERVA 2 first computes the match between the test cue and each

trace i stored in memory. Match is operationalized as the cue-trace dot product, divided by the

number of features contributing to the dot product:

Si =

N
∑

j=1

PjTi,j

Ni

(3)

Si is the match value, Pj is the value of feature j in the cue, Ti,j is the value of feature j in trace

i, N is the number of features, and Ni is the number of features where either the cue or trace is

nonzero.

Next, MINERVA 2 cubes each of these individual match scores to compute an “activation”

value Ai for each trace.

Ai = S3
i (4)

Finally, these activation values are summed together across the M traces in memory to yield an

“echo intensity” (global match) score I:

I =
M

∑

i=1

Ai (5)

MINERVA 2 shows sensitivity to conjunctions because matches spread across multiple stored
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traces are combined in an additive fashion, but (because of the cube rule) multiple matches to a

single trace are combined in a positively accelerated fashion. For example, consider the difference

between two traces with match values Si of .5, vs. one trace with a match value Si of 1.0. Because

of the cube rule, the total match value I in the former case is .53 + .53 = .25 whereas in the latter

case I = 1.03 = 1.0.

The NEMO model (Kahana & Sekuler, 2002) achieves sensitivity to conjunctions in a similar

fashion: First, NEMO computes a vector distance d(i, j) between the cue and the memory trace

(note: small distance = high similarity). Next, the distance value is passed through an exponential

function, which — like the cube function — has the effect of emphasizing close matches (i.e.,

small distances) relative to weaker matches (i.e., large distances):

η(i, j) = e−τd(i,j) (6)

In the above equation, η(i, j) is the adjusted similarity score, and τ is a model parameter that

determines the steepness of the generalization curve (i.e., how close does a match have to be in

order to contribute strongly to the overall “summed similarity” score).

In abstract models, the same “match” rule that is used to compute the global-match familiarity

signal is also used when simulating recall, although the specific way in which the match rule is

used during recall differs from model to model. For example, MINERVA 2 simulates recall by

computing a weighted sum C of all of the items i stored in memory, where each item is weighted

by its match to the test cue. The jth element of C is given by:

Cj =

M
∑

i=1

AiTi,j (7)

In contrast, models like SAM and REM use the individual match scores to determine which

(single) memory trace will be “sampled” for recall (see Section 3.1 below).



26 Computational models of episodic memory

Collectively, abstract models have been very successful in explaining behavioral recall and

recognition data from normal subjects (see Clark & Gronlund, 1996, Raaijmakers & Shiffrin, 2002,

and Raaijmakers, 2005 for reviews).4 The remaining part of this section is structured as follows:

Section 3.1 presents a detailed description of the Shiffrin and Steyvers (1997) REM model. REM is

highlighted because, of all of the models mentioned above, it is the model that is being developed

and applied most actively, and because it has the most principled mathematical foundation. Section

3.2 describes important differences between “separate storage” abstract models (e.g., REM) and

biological models with regard to their predictions about the mechanisms of interference (i.e., does

studying new items degrade previously stored memory traces). Finally, whereas most abstract

models try to explain recognition memory data solely in terms of the “global match” familiar-

ity mechanism (and not recall), Section 3.3 reviews two recently developed dual-process abstract

models that address contributions of both recall and familiarity to recognition performance.

3.1. The REM model of recognition and recall

The Shiffrin and Steyvers (1997) REM model is the most recent iteration of a line of models that

dates back to the Raaijmakers and Shiffrin (1981) Search of Associative Memory (SAM) model.

One of the main differences between REM and previous models like SAM and MINERVA 2 is that

REM implements a principled Bayesian calculation of the likelihood that the cue “matches” (i.e.,

corresponds to the same item as) a particular stored memory trace, whereas the match calculation

was not defined in Bayesian terms in previous models (Raaijmakers & Shiffrin, 2002; for another

example of a model that takes this Bayesian approach see McClelland & Chappell, 1998; for addi-

tional discussion of Bayesian modeling see the chapter by Tenenbaum & Griffiths in this volume).

The REM equations below were adapted from Shiffrin and Steyvers (1997), Xu and Malmberg (in

4In principle, abstract models can be used to account for data from memory-impaired populations as well as normal
populations (by finding a set of parameter changes that lead to the desired pattern of memory deficits) but, in practice,
few studies have taken this approach — some notable exceptions include Malmberg, Zeelenberg, and Shiffrin (2004b)
and Howard, Kahana, and Wingfield (in press-b).
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press) and Malmberg and Shiffrin (2005).

In REM, items are vectors of features whose values, V, are geometrically distributed integers.

Specifically, the probability of a particular feature being assigned a particular value is given by

P [V = j] = (1 − g)j−1g (8)

where g is the geometric distribution parameter (with a value between 0 and 1). The primary

consequence of feature values being distributed geometrically (according to Equation 8) is that

high feature values are less common than low feature values.

When an item is studied, the features of that item are copied into an episodic trace for that

item. The probability of storing a particular feature in an episodic trace is denoted by u∗. The

probability of encoding that feature correctly (given that it has been stored) is denoted by c. If the

feature is encoded incorrectly, a new value for that feature is randomly drawn from the geometric

distribution. A zero value means that no value is stored for the feature.

At test, the retrieval cue is compared to each trace, and (for each trace j), the model calculates

the likelihood λj that the cue and the trace match (i.e., they correspond to the same item):

λj = (1 − c)njq

∞
∏

i=1

[

c + (1 − c)g(1 − g)i−1

g(1 − g)i−1

]nijm

(9)

where njq is the number of nonzero features in the jth memory trace that mismatch the cue

(regardless of value) and nijm is the number of nonzero features in the jth memory trace that

match the cue and have value i. Equation 9 was derived by computing two different probabilities:

• The probability of obtaining the observed pattern of matching and mismatching features,

assuming that the cue and trace correspond to the same item, and

• The probability of obtaining the observed pattern of matching and mismatching features,

assuming that the cue and trace correspond to different items,
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The likelihood value λj is computed by dividing the former probability by the latter. Shiffrin

and Steyvers (1997), Appendix A, contains a detailed derivation of Equation 9.

The same core “match” calculation is used for both recognition and recall in REM. The model

is applied to recognition by computing

Φ =
1

n

n
∑

j=1

λj (10)

Mathematically, Φ corresponds to the overall odds that the item is old (vs. new). If the Φ

exceeds a pre-set criterion (typically the criterion is set to Φ > 1.0, indicating that the item is

more likely to be old than new) then the item is called “old”. The fact that the effects of individual

matches (and mismatches) are combined multiplicatively within individual traces (Equation 9) and

additively across traces (Equation 10) serves the same function as the “cube rule” in MINERVA 2

and the exponential function in NEMO, i.e., it ensures that multiple matches to a single trace have

a larger effect on Φ than the same number of feature matches, spread across multiple traces.

Recall in REM (like recall in SAM; Raaijmakers & Shiffrin, 1981) has both a sampling com-

ponent (which picks a single trace out from the memory store) and a recovery component (which

determines whether the sampled memory trace is retrieved successfully). Sampling is done with

replacement. The probability of sampling image Ij , given the retrieval cue Q is as follows:

P (Ij|Q) =
λ

γ
j

∑

λ
γ
k

(11)

λj is the match value (described above) for image Ij , and γ is a scaling parameter. The de-

nominator is the sum of the scaled likelihood ratios across the activated images. Once an item is

sampled, the probability that the image will be recovered and output, P (R), is given by

P (R) = ρτ
r (12)
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where ρr is the proportion of correctly stored item features in that image and τ is a scaling

parameter. Thus, in REM, well-encoded items are more likely to be recovered than poorly-encoded

items.

Representative REM results

Researchers have demonstrated that REM can explain a wide range of episodic memory find-

ings. For example, Shiffrin and Steyvers (1997) demonstrated that the “global match” familiarity

mechanism described above can account for the word frequency mirror effect: the finding that

subjects make more false alarms to high-frequency lures vs. low-frequency lures, and that sub-

jects make more correct “old” responses to low-frequency targets vs. high-frequency targets (e.g.,

Glanzer, Adams, Iverson, & Kim, 1993). REM’s account of word frequency effects is based on the

idea that low-frequency (LF) words have more unusual features than high-frequency (HF) words;

specifically, REM can fit the observed pattern of word frequency effects by using a slightly lower

value of the geometric distribution parameter g when generating LF items, which results in these

items having slightly higher (and thus more unusual) feature values (see Equation 8). The fact that

LF items have unusual features has two implications: First, it means that LF lures are not likely

to spuriously match stored memory traces — this explains why there are fewer LF false alarms

than HF false alarms. Second, it means that, when LF cues do match stored traces, this is strong

evidence that the item was studied (because matches to unusual features are unlikely to occur due

to chance); as such, LF targets tend to trigger high likelihood (λ) values, which explains why the

hit rate is higher for LF targets than HF targets.

One implication of this account is that, if one could engineer a situation where the (unusual)

features of LF lures match stored memory traces as often as the (more common) features of HF

lures, subjects will show a higher false alarm rate for LF lures than HF lures (the reverse of the nor-

mal pattern). This prediction was tested and confirmed by Malmberg et al. (2004a), who induced

a high rate of “spurious match” for low-frequency lures by using lures that were highly similar to
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studied items (e.g., study “yachts”, test with “yacht”).

3.2. Differences in how models explain interference

One important difference between “separate storage” abstract models like REM and biological

models like CLS relates to sources of interference. In REM, memory traces are stored in a non-

interfering fashion, and interference arises at test (whenever the test cue matches memory traces

other than the target memory trace).5 For example, SAM and REM predict that strengthening

some list items (by presenting them repeatedly) will impair recall of non-strengthened items, by

increasing the odds that the strengthened items will be sampled instead of non-strengthened items

(Malmberg & Shiffrin, 2005). Effectively, the model’s ability to sample these non-strengthened

items is blocked by sampling of the strengthened items.

Biological models, like abstract models, posit that interference can occur at test (due to com-

petition between the target memory and non-target memories). However, in contrast to models

like REM, biological models also posit that interference can occur at study: Insofar as learning in

biological models involves both strengthening and weakening of synapses, adjusting synapses to

store one memory could end up weakening other memories that also rely on those synapses. This

trace weakening process is sometimes referred to as structural interference (Murnane & Shiffrin,

1991) or unlearning (e.g., Melton & Irwin, 1940).

Models like SAM and REM have focused on interference at test, as opposed to structural inter-

ference at study, for two reasons:

• The first reason is parsimony: Models that rely entirely on interference at test can account for

a very wide range of forgetting data. In particular, Mensink and Raaijmakers (1988) showed

that a variant of the SAM model can account for several phenomena that were previously

5Within the realm of abstract models positing interference-at-test, there is some controversy about whether inter-
ference arises from spurious matches to other items on the study list, as opposed to spurious matches to memory traces
from outside the experimental context; see Dennis and Humphreys (2001) and Criss and Shiffrin (2004) for contrasting
perspectives on this issue.
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attributed to unlearning (e.g., retroactive interference in AB-AC interference paradigms;

Barnes & Underwood, 1959).

• The second reason is that it is unclear how to instantiate structural interference properly

within a separate-storage framework. For example, in REM, structural interference would

presumably involve deletion of features from episodic traces, but it is unclear which features

to delete. Biologically-based neural network models fare better in this regard, insofar as

these models incorporate synaptic learning rules that explicitly specify how to adjust synaptic

strengths (upward or downward) as a function of presynaptic and postsynaptic activity.

The most important open issue, with regard to modeling interference and forgetting, is whether

there are any results in the literature that can only be explained by positing trace-weakening mech-

anisms. Michael Anderson has argued that certain findings in the retrieval-induced forgetting lit-

erature may meet this criterion (see Anderson, 2003 for a review). In retrieval-induced forgetting

experiments, subjects study a list of items, and then a subset of the studied items are strengthened

during a second “practice” phase. Anderson and others have found that manipulations that affect

the degree of retrieval competition during the practice phase (e.g., whether subjects are given a

well-specified cue or a poorly-specified cue; Anderson, Bjork, & Bjork, 2000) can affect the ex-

tent to which non-practiced items are forgotten, without affecting the extent to which practiced

items are strengthened. Anderson (2003) explains these results in terms of the idea that (i) com-

petitors are weakened during memory retrieval, and (ii) the degree of weakening is proportional

to the degree of competition.6 Anderson also points out that simple “blocking” accounts of for-

getting may have difficulty explaining the observed pattern of results (increased forgetting without

increased strengthening): According to these blocking accounts, forgetting of non-strengthened

items is a direct consequence of strengthened items being recalled in place of non-strengthened

6See Norman, Newman, & Detre, 2006a for a neural network model of retrieval-induced forgetting that instanti-
ates these ideas about competitor-weakening; the model uses the oscillating learning algorithm described earlier to
strengthen the practiced item and weaken competitors.
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items; as such, practice manipulations that lead to the same amount of strengthening should lead

to the same amount of forgetting. At this point, it is unclear whether separate-storage models like

REM (which are considerably more sophisticated than the simple blocking theories described by

Anderson, 2003) can account for the retrieval-induced forgetting results described here.

3.3. Abstract models and dual-process theories

Abstract models have traditionally taken a single-process approach to recognition, whereby

they try to explain recognition performance exclusively in terms of the global match familiarity

process (without positing that recall of specific details contributes to recognition). As with the

structural-interference issue above, the main reason that abstract models have taken this approach

is parsimony: The single-process approach has been extremely successful in accounting for recog-

nition data, hence there is no need to complicate the model by positing that recall contributes

routinely to recognition judgments. However, more recently, Malmberg et al. (2004a) and Xu and

Malmberg (in press) have identified some data patterns (from paradigms that use lures that are

closely related to studied items) that can not be fully explained using the REM familiarity process.

Specifically, studies using related lures (e.g., switched-plurality lures: study “rats”, test “rat”) have

found that increasing the number of study presentations of “rats” increases hits, but does not re-

liably increase false recognition of similar lures like “rat”. Dual-process models can explain this

result in terms of the idea that increased study of “rats” increases the familiarity of “rat” (which

tends to boost false recognition), but it also increases the odds that subjects will recall that they

studied “rats”, not “rat” (Hintzman, Curran, & Oppy, 1992). Malmberg et al. (2004a) showed that

the REM global match process can not simultaneously generate an increase in hit rates, coupled

with no change (or a decrease) in false alarm rates to similar lures (see Xu & Malmberg, in press

for a similar finding, using an associative recognition paradigm).

In response to this issue, Malmberg et al. (2004a) developed a dual-process REM model of

recognition, which incorporates both the REM “global match” familiarity judgment and the REM
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recall process described earlier. This model operates in the following manner: First, stimulus

familiarity is computed (using Equation 9). If familiarity is below a threshold value, the item is

called “new”. If familiarity is above the threshold value, the recall process is engaged. The model

samples a single memory trace and attempts to recover the contents of that trace. If recovery

succeeds and the recovered item matches the test cue, the item is called “old”. If recovery succeeds

and the recovered item mismatches the test cue (e.g., the model recalls “rats” but the test cue

is “rat”), the item is called “new”. If the recovery process fails, the model guesses “old” with

probability γ.7 The addition of this extra recall process allows the model to accommodate the

combination of increasing hits and no increase in false alarms to similar lures.

The SAC model Reder’s SAC (Source of Activation Confusion) model (e.g., Reder, Nhouy-

vanisvong, Schunn, Ayers, Angstadt, & Hiraki, 2000) takes a different approach to simulating

contributions of recall and familiarity to recognition memory. In the SAC model, items are rep-

resented as nodes in a network; episodic memory traces are represented as special nodes that are

linked both to the item and to a node representing the experimental context. Activation is allowed

to spread at test; the degree of spreading activation coming out of a node is a function of the node’s

activation and also the number of connections coming out of the node (the more connections, the

less activation that spreads per connection; for discussion of empirical evidence that supports this

“fan effect” assumption, see Anderson & Reder, 1999; see also Anderson & Lebiere, 1998 for dis-

cussion of another model that incorporates this assumption). In SAC, familiarity is a function of

the activation of the item node itself, whereas recall is a function of the activation of the episodic

node that was created when the item was studied.

Reder et al. (2000) demonstrated that the SAC model can account for word frequency mirror

effects. According to SAC, the false alarm portion of the mirror effect (false alarms to HF lures >

7To accommodate the idea that subjects rely more on recall in some situations than others (see the Memory decision-
making section above), the dual-process version of REM includes an extra model parameter (a) that scales the proba-
bility of using recall on a given trial.
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false alarms to LF lures) is due to familiarity, and the hit-rate portion of the mirror effect (hit rate

for LF targets > hit rate for HF targets) is due to recall (for similar views, see Joordens & Hockley,

2000; Hirshman, Fisher, Henthorn, Arndt, & Passannante, 2002). In SAC, the fact that HF lures

have been presented more often than LF lures (prior to the experiment) gives them a higher baseline

level of activation, and — through this — a higher level of familiarity. The fact that LF targets are

linked to fewer pre-experimental contexts than HF targets, and thus have a smaller “fan factor”,

means that activity can spread more efficiently to the “episodic node” associated with the study

event (leading to a higher hit rate for LF items).

Reder et al. (2000) argue that this dual-process account of mirror effects is preferable to the

REM account insofar as it models frequency differences in terms of actual differences in the num-

ber of pre-experimental presentations, instead of the idea (used by REM) that LF words have more

unusual features than HF words. However, it remains to be seen whether the Reder et al. (2000)

model provides a better overall account of word frequency effects than REM (in terms of model

fit, and in terms of novel, validated predictions).

4. Context, free recall and active maintenance

Up to this point, this chapter has discussed accounts of how the memory system responds to

a particular cue, but it has not yet touched on how the memory system behaves when external

cues are less well-specified, and subjects have to generate their own cues in order to target a

particular memory (or set of memories). Take the scenario of trying to remember where you left

your keys. The most common advice in this situation is to reinstate your mental context as a means

of prompting recall — if you succeed in remembering what you were doing and what you were

thinking earlier in the day, this will boost the probability of recalling where you left the keys. This

idea of reinstating mental context plays a key role in theories of strategic memory search. Multiple

laboratory paradigms have been developed to examine this process of strategic memory search.
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The most commonly used paradigm is free recall, where subjects are given a word list and are then

asked to retrieve the studied word list in any order. Section 4.1 describes an abstract modeling

framework, the Temporal Context Model (TCM; Howard & Kahana, 2002), that has proved to

be very useful in understanding how we selectively retrieve memories from a particular temporal

context in free recall experiments. Section 4.2 discusses methods for implementing TCM dynamics

in biologically-based neural network models.

4.1. The temporal context model (TCM)

TCM is the most recent in a long succession of models that use a drifting mental context to

explain memory targeting (e.g., Mensink & Raaijmakers, 1988; Estes, 1955). The basic idea behind

these models is that the subject’s inner mental context (comprised of the constellation of thoughts

that are active at a particular moment) changes gradually over time. Mensink and Raaijmakers

(1988) instantiate this idea in terms of a binary context vector, where each element of this context

vector is updated (with some probability) on each time step; the higher the probability of updating,

the faster the context vector drifts over time. During the study phase of a memory experiment,

items are associated with the state of the context vector (at the time of presentation). At test, the

recall process is initiated by cuing with the current state of the context vector, which (in turn)

triggers retrieval of items that were associated with these contextual elements at study.

The main difference between TCM and previous contextual-drift models like Mensink and

Raaijmakers (1988) is that — in TCM — context does not drift randomly. Rather, contextual

updating is driven by the features of the items being studied. More precisely, the state of the

context vector at time i, ti, is given by:

ti = ρiti−1 + βt
IN
i , (13)

where β is a free parameter that determines the rate of contextual drift, ρi is chosen at each
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time step such that ti is always of unit length, and t
IN
i corresponds to “pre-experimental context”

associated with the item being studied at time i (i.e., an amalgamation of all of the contexts in

which that item has previously appeared). The key thing to note is that pre-experimental context

is different for each item; thus, adding t
IN
i to the context vector has the effect of injecting specific

information about the just-studied item into the context vector.

The most current version of TCM (Howard et al., in press-b) posits that, on a given time step,

the current item is associated with active contextual features, and then the context vector is updated

according to Equation 13. Thus, the item studied at time i ends up being associated with the state of

the context vector that was computed on time step i − 1. At test, the free recall process is initiated

by cuing with the current state of the context vector. As in SAM, items are sampled according

to how well the context cue matches the context associated with the stored item (see Howard &

Kahana, 2002 for more detailed description of how item-context associations are formed at study,

and how items are sampled at test). If the item studied at time i is sampled at time step r, the

context is updated according to the following equations:

tr = ρitr−1 + βt
IN
r , (14)

where t
IN
r (the information injected into the context vector) is given by:

t
IN
r = αOt

IN
i + αNti−1 + ηnr. (15)

In Equation 15, tIN
i is the pre-experimental context associated with item i, ti−1 is the contextual

information that was associated with item i at study, and nr is a noise term. αO, αN , and η

are scaling parameters. Thus, the context-updating operation associated with recalling item i has

much in common with the context-updating operation associated with studying item i. In both

cases, context is updated by injecting t
IN
i (item-specific information relating to item i). The main
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difference, apart from the noise term, is that context is also updated with ti−1, the state of the

context vector at the time the (just-retrieved) item was studied. This latter updating operation can

be construed as “mentally jumping back in time” to the moment when the (just-retrieved) item was

studied. As discussed below, the two kinds of updating mentioned here (tIN
i vs. ti−1) have distinct

effects on recall transition probabilities. Once the context vector is updated, it is used to cue for

additional items, which leads to additional updating of the context vector, and so on.

How TCM accounts for recall data

Contextual drift models (in general) and TCM (in particular) can account for a wide range of

free recall findings; some representative findings are discussed in this section.

As one example, contextual drift models provide an elegant account of the long-term recency

effect in free recall. Circa 1970, it was believed that recency effects (better recall of items from the

end of the list) were attributable to the fact that recently presented items were still being held in a

short-term memory buffer. As such, manipulations that disrupt this buffer (e.g., a distraction-filled

retention interval) should sharply reduce recency effects. However, Bjork and Whitten (1974) and

other studies have since demonstrated that recency effects can still be observed after a distraction-

filled delay. Bjork and Whitten (1974) showed that the key determinant of recency is the ratio of

the time elapsed since study of item A vs. and the time elapsed since study of item B; the smaller

this ratio is (indicating that A was presented relatively more recently than B), the better A will

be recalled relative to B (Glenberg, Bradley, Stevenson, Kraus, Tkachuk, Gretz, Fish, & Turpin,

1980). This can be explained by contextual drift models, in the following manner:

• Because of contextual drift, the current test context (being used as a cue) matches the context

associated with recently presented items more than the context associated with less recently

presented items.

• Since recall is a competitive process, recall of a particular trace is a function of the match
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Figure 3: Conditional response probability (CRP) curve, showing the probability of recalling an item
studied at serial position i + lag immediately after recall of an item studied at serial position i (Figure
courtesy of Marc Howard). This particular CRP curve was created by averaging together the CRP curves
from multiple studies; see the caption of Figure 1A in Howard et al. (in press-a) for more details.

between the cue and that trace, relative to other cue-trace match values. Increasing the

recency of item A (relative to item B) increases the extent to which the test cue matches the

A-context vs. the B-context, thereby boosting recall of A relative to B.

Critically, in order to explain recency effects, the rate of drift can not be too fast — if, e.g., all

of the contextual elements changed on every trial, then recently presented items would not have

any more “contextual match” than less recently presented items. Put another way, at least some

contextual elements need to persist long enough to span the gap between recently presented studied

items and the time of test.

In their 2002 paper, Howard & Kahana also showed that TCM can account for detailed patterns

of transition data in free recall: Given that the Nth item from the study list was just recalled, what

are the odds that the next item recalled will be the N+1st item, N-1st item, N+2nd item, and so

on? Kahana (1996) plotted this conditional response probability (CRP) curve (see also Howard &

Kahana, 1999). A representative CRP curve is shown in Figure 3.
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There are two major findings to highlight. First, items that are studied in nearby serial positions

in the study list tend to be recalled close together at test (Kahana, 1996 calls this regularity the

lag-recency effect). This holds true even if filled distractor intervals are inserted between items

at study, making it unlikely that these contiguity effects are due to subjects rehearsing contiguous

items together in short-term memory. This basic regularity can be explained in terms of the idea

that, when subjects retrieve an item, they retrieve contextual features associated with that item, and

then they use these retrieved contextual features to cue for more items. Insofar as items studied

close in time to one another have similar context vectors, cuing with contextual information from

time t will facilitate recall of other items studied in (temporal) proximity to time t.

Howard and Kahana (2002) point out retrieved context from the study phase (ti−1 from Equa-

tion 15) is a temporally symmetric cue: Assuming a steady rate of “contextual drift”, the context

active at one point in time should match the context from the preceding time step just as well as it

matches the context from the following time step. However, as clearly shown in Figure 3, the CRP

curve is asymmetric: Subjects are more likely to recall in the forward direction than the backward

direction. This can be explained in terms of the idea that t
IN
i (the item-specific information that

is injected into the context vector when item i is studied, and when it is retrieved at test) is an

asymmetric cue: This information is present in the context vector for items that were studied after

the retrieved item, but not for items that were studied before the retrieved item. Thus, cuing with

this item-specific information at test biases recall in the forward direction.

4.2. TCM in the brain

Importantly, TCM is not meant to stand on its own as a full-fledged model. Rather it provides

an abstract blueprint for how models can account for serial-position & transition data in free recall.

Given this blueprint, a key challenge for computational models of episodic memory is to determine

how these dynamics could be implemented in a neural network.

The next part of this section shows how neural network architectures that are capable of active
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maintenance can serve as the “context vector” in models of long-term memory. Traditionally, ac-

tive maintenance networks have been used to model performance in short-term (working) memory

tasks (e.g., Botvinick & Plaut, 2006; Usher & Cohen, 1999). A synthesis is proposed whereby

active maintenance systems serve a dual role: They directly support performance on short-term

memory tasks, and they also serve to contextualize episodic memory (via associations that are

formed at study between the representation of the item being studied, and other representations

that are currently being maintained in active memory). Finally, the roles of different brain systems

in implementing TCM dynamics are discussed, with a particular focus on prefrontal cortex and

entorhinal cortex.

Architectures for active maintenance

The discussion of TCM, above, indicates that the context vector should have the following

properties:

• When an item is studied, the context vector should be updated with information relating to

that item.

• Information in the context vector needs to persist across multiple trials and possibly longer

(but not indefinitely). This persistent activity creates the “drift” dynamic whereby recently

presented items match the current context more than less-recently presented items.

Below, two network architectures are described that meet these criteria. Both models were

originally developed to account for working memory data (e.g., recall of items from a short-term

buffer). The same active maintenance mechanisms that allow these models to support working

memory performance also imbue the models with the requisite context-vector properties (i.e., item-

specific updating and slow drift over time).

The Usher & Cohen (1999) localist attractor network In this network, when an item is pre-

sented, it triggers activation in the corresponding unit of the attractor network, which is then sus-
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tained (via a self-connection in that unit) over an extended period of time. Multiple units can be

active at once, so the state of the network at any one time reflects contributions from multiple re-

cently presented items. The total amount of network activity is limited by inhibitory connections

between the units. Because of these inhibitory interactions, activating a new unit in the buffer re-

duces the activation of other units in the buffer, eventually causing them to drop out entirely. This

dynamic causes the overall state of the buffer to drift over time.

The O’Reilly & Frank (2006) prefrontal network Recently, O’Reilly and Frank (2006; Frank,

Loughry, & O’Reilly, 2001) developed a network architecture for active maintenance that is based

explicitly on the neural architecture of prefrontal cortex (PFC). The network consists of multi-

ple stripes (separate subregions of PFC; Levitt, Lewis, Yoshioka, & Lund, 1993; Pucak, Levitt,

Lund, & Lewis, 1996), each of which is capable of actively maintaining (via bistable neuronal

activity; Durstewitz, Kelc, & Gunturkun, 1999; Durstewitz, Seamans, & Sejnowski, 2000; Fellous,

Wang, & Lisman, 1998) information about recently presented stimuli. Each PFC stripe has a cor-

responding region of the basal ganglia that controls when information should be gated into or out

of that stripe. When a given stimulus is presented, information about that stimulus will be gated

into some number of stripes and then actively maintained (possibly overwriting information about

other stimuli that was previously being maintained in those stripes). At any given moment, the

state of the PFC network will reflect a combination of influences from multiple recently-presented

items.

The above list is not meant to be exhaustive. On the contrary, almost any network that is ca-

pable of maintaining information pertaining to multiple, recently presented items has the requisite

properties to serve as the context vector.8

8One other architecture worth mentioning in this regard is the Simple Recurrent Network (SRN; Elman, 1991). See
Botvinick and Plaut (2006) for discussion of how SRNs can be used to model short-term recall data, and see Howard
and Kahana (2002) for discussion of how SRNs can instantiate the TCM contextual drift dynamic. For additional
discussion of models of active maintenance, see the chapter by De Pisapia, Repovs, and Braver in this volume.
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Integrating active maintenance and long-term memory

At this point in time, only one model has been developed that uses an active maintenance net-

work to contextualize long-term memory. This model (constructed by Polyn, Norman, & Cohen,

2003) is discussed below, along with another free recall model presented by Davelaar, Goshen-

Gottstein, Ashkenazi, Haarmann, and Usher (2005). The Davelaar et al. (2005) model does not

meet the TCM criteria in its current form, but it can easily be modified to meet these criteria.

The Polyn, Norman, & Cohen (2003) model This model merges the CLS cortical network

and hippocampal network with a simplified variant of the O’Reilly and Frank (2006) PFC model.

The “posterior cortex” part of the network (which has an architecture similar to the CLS cortical

model described earlier) represents the item currently being presented; the PFC network actively

maintains features from multiple, recently presented items; and the hippocampal model binds in-

formation in posterior cortex to the actively maintained PFC pattern. In this manner, the pattern

of activity in PFC (at the moment that an item is studied) serves to contextualize that item repre-

sentation. When an episodic memory (consisting of an item representation in posterior cortex and

the associated PFC “context” representation) is retrieved at test, the current PFC representation

is updated in two ways: The retrieved PFC pattern from the study phase is loaded directly into

PFC, and the retrieved item representation is used to update PFC (in the exact same way that item

information is used to update PFC at study). These two types of updating correspond directly to

the two types of context-updating used by TCM (as described earlier). Polyn et al. (2003) showed

that the model can account for data on recall transitions and other findings (see also Polyn, 2005),

but the model is still in an early phase of development.

The Davelaar et al. (2005) free recall model The goal of the Davelaar et al. (2005) paper was

to address data showing that recall from a short-term buffer and recall from long-term memory both

contribute to free recall (e.g., the finding from Carlesimo, Marfia, Loasses, & Caltagirone, 1996

that amnesics show intact recall of the last few list items on an immediate recall test, but not on
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a delayed recall test; presumably, this occurs because amnesics can rely on their intact short-term

buffer given immediate testing but not delayed testing; see Davelaar et al., 2005 for a list of other

relevant phenomena). To model the contributions of short-term memory, the Davelaar et al. (2005)

model includes a variant of the Usher and Cohen (1999) localist attractor network described above.

However, instead of using states of this localist attractor network to contextualize long-term recall,

the Davelaar et al. (2005) model contextualizes recall using a separate, specialized context layer

that operationalizes contextual drift as a one-dimensional random walk. States of the randomly

drifting context vector are episodically associated with simultaneously active states of the localist

attractor network. At retrieval, items are directly read out from the localist attractor network (to

model short-term recall), then the context vector is allowed to randomly drift (as it did at study),

cuing — as it drifts — episodic recall of items that were associated with the currently active

context state. The context-updating mechanism used by Davelaar et al. (2005) constitutes a step

backward from TCM: Because context-updating is random, as opposed to being driven by item-

specific information (as in TCM), the Davelaar et al. (2005) model fails to provide a principled

account of some findings (e.g., the forward asymmetry in the conditional response probability

curve) that are explained very naturally by TCM.9

According to the “dual role” hypothesis outlined above, it seems possible that one could im-

prove the fit of the Davelaar et al. (2005) model to the data, and simultaneously simplify the model,

by eliminating the (randomly drifting) context vector, and using the information maintained in the

short-term memory buffer to contextualize long-term item memory. However, additional simula-

tion work is required to assess whether this simplified model can account for all of the findings

described in the Davelaar et al. (2005) paper as well as the lag-recency findings described by

Howard and Kahana (2002).10 One major challenge will be accounting for effects of distracting

9To account for the forward asymmetry in the CRP curve, Davelaar et al. (2005) add an extra parameter to their
model that directly imposes a forward bias on the contextual random walk.

10These ideas about integrating models of short-term and long-term memory were spurred by discussions at the 3rd
Annual Context and Memory Symposium in March, 2005 in Philadelphia, PA.
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mental activity on recall. Several studies have obtained recency and lag-recency effects in continu-

ous distractor paradigms, where an involving secondary task (e.g., mental arithmetic) is interposed

between study trials (e.g., Howard & Kahana, 1999). These findings suggest that the temporal con-

tinuity of the context vector is preserved in the face of distraction. However, there have been nu-

merous demonstrations that distracting activity can reduce recall of items from short-term (active)

memory to near-floor levels (e.g., Peterson & Peterson, 1959). In order to simultaneously explain

these findings, models of the sort being discussed here (i.e., positing that the context vector and

short-term memory buffer are coextensive) would have to posit that distraction degrades actively

maintained representations, so they no longer support explicit recovery of items from short-term

memory. However, so long as distraction does not completely eradicate the contents of active

memory (i.e., so long as there is still some carry-over of activity from previously studied items)

the pattern of activity in active memory should still be able to serve as a drifting context vector that

supports long-term recency and lag-recency effects.11

Relevant brain structures

As of now, there is still extensive debate in the literature regarding which brain regions con-

tribute most strongly to the context vector. Given the well-accepted role of PFC in active mainte-

nance/working memory (based on neurophysiological findings in animals, human imaging studies,

and human lesion studies showing that patients with PFC damage are selectively impaired in tests

that tap memory for context, e.g., free recall & recency judgments; e.g., Shimamura, 1994), it

stands to reason that PFC would play an especially important role in establishing the kinds of con-

textual drift required by the TCM model. Furthermore, anatomical studies have established that

there are several pathways connecting PFC and the hippocampus (see, e.g., Morris, Pandya, &

Petrides, 1999; Goldman-Rakic, Selemon, & Schwartz, 1984; Russchen, Amaral, & Price, 1987;

Ferino, Thierry, & Glowinski, 1987; Jay & Witter, 1991). Many of these pathways feed into the

11For additional discussion of the role of context in short-term and long-term recall, see Burgess and Hitch (2005).
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entorhinal cortex before projecting into the hippocampus proper. These pathways would allow the

hippocampus to bind actively maintained information in PFC (serving as a context vector) with

bottom-up activity in posterior cortex (corresponding to the currently presented stimulus).

For these reasons, the Polyn et al. (2003) model makes an explicit commitment to the idea that

PFC is driving contextual drift. However, not all recently developed models have committed to

this idea. The most prominent contrary view comes from Howard, Fotedar, Datey, and Hasselmo

(2005), who have argued that entorhinal cortex (EC) has intrinsic maintenance properties that

allow it to serve as the TCM context vector (regardless of the input that it receives from PFC).

Howard et al. (2005) cite evidence from Egorov, Hamam, Fransen, Hasselmo, and Alonso (2002),

showing that layer V of entorhinal cortex shows persistent neural activity in the absence of bottom-

up stimulation, and thus can serve as a “neural integrator” that combines information from several

recently presented stimuli. In summary, both the Polyn et al. (2003) model and the Howard et al.

(2005) model posit that EC is involved in representing temporal context, but for different reasons:

According to Polyn et al. (2003), EC is important because it serves as a conduit between PFC and

the hippocampus, whereas Howard et al. (2005) posit that EC is important because of its intrinsic

capability for active maintenance. At this point, the most plausible view is that both accounts are

correct. 12

5. Conclusions

Looking back on the past several decades, modelers have made tremendous strides toward un-

derstanding the mechanisms underlying episodic memory. As discussed in Section 3, abstract

modelers have derived mathematically principled accounts of some of the most puzzling phenom-

ena in episodic memory (e.g., how stimulus repetition affects false recognition of similar lures).

12The above discussion has focused on how PFC and EC contribute to temporal targeting (i.e., selective retrieval of
items from a particular temporal context). For a model of how PFC contributes to semantic targeting (i.e., organizing
recall such that semantically similar items are recalled together) see Becker and Lim (2003).
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There is an emerging consensus between biological and abstract models that both recall and famil-

iarity can contribute to recognition memory (although the factors that determine how much recall

contributes in a given situation need to be described in more detail). Another point of agreement

between abstract and biological models is that interference between memory traces at retrieval can

cause forgetting. One remaining issue is whether structural interference occurs between memory

traces during learning (i.e., does acquiring new memories cause weakening of existing traces), and

— if it occurs — how it affects behavioral memory performance. Biological models typically are

subject to structural interference, but abstract models that store memory traces separately (e.g.,

REM) do not suffer from structural interference.

While abstract models of episodic memory have been around for quite a while, modelers have

only recently started to apply biologically-based models to detailed patterns of episodic memory

data. The combined influence of behavioral and neural constraints has led to rapid evolution of

these biologically-based models:

• As discussed in Section 2.1, there is now widespread agreement among modelers regarding

how the hippocampus supports completion of missing pieces of previously stored cortical

patterns, and how pattern separation mechanisms in the hippocampus allow it to rapidly

memorize patterns without suffering catastrophic interference. One of the largest remaining

challenges is understanding how the hippocampus manages to flip between “modes” where

pattern separation predominates (to facilitate encoding) and modes where pattern completion

predominates (to facilitate retrieval).

• With regard to modeling perirhinal contributions to familiarity-based recognition: As dis-

cussed in Section 2.2, some models of perirhinal familiarity (e.g., the CLS cortical model)

can be ruled out based on capacity concerns. However, there are several other models with

no obvious capacity problems that can fit basic aspects of extant neurophysiological data

(e.g., decreased firing of some perirhinal neurons with stimulus repetition). More simula-
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tion work needs to be done, and additional neurophysiological and behavioral experiments

need to be run (e.g., looking at the context-dependence of familiarity), in order to assess the

detailed fit of these remaining models to experimental data on familiarity-based recognition.

• Finally, as discussed in Section 4, modelers have started to explore the idea that the pattern

of actively maintained information in prefrontal cortex can serve as a drifting context vector.

This actively maintained information is fed into entorhinal cortex (which may have intrinsic

maintenance properties of its own), where it is bound together (by the hippocampus) with

information pertaining to the currently presented item. This dynamic allows neural models

to mimic the functioning of abstract contextual-drift models like TCM (Howard & Kahana,

2002), which (in turn) should allow the models to explain detailed patterns of recency and

lag-recency data from free recall experiments.

The next challenge for biologically-based models is to assemble these pieces into a unified the-

ory. Even though there is general agreement about how this “unified theory” should be structured,

there are an enormous number of critical details that need to be filled in. Some of these missing

details were mentioned in the chapter (e.g., decision-making mechanisms for recognition memory)

but there are innumerable other details that were not explicitly mentioned (e.g., what rules govern

when information is gated into and out of active memory — see O’Reilly & Frank, 2006). In

the process of working out these details, it will almost certainly become necessary to consider the

contributions of other brain structures (e.g., the basal ganglia) that were not discussed at length

in this chapter. Also, the models discussed in this chapter contain major simplifications. In par-

ticular, most of the models discussed here use rate-coded neurons (instead of spiking neurons)

and static input patterns (instead of temporal sequences). Achieving a complete understanding

of episodic memory will almost certainly require consideration of spiking neurons, spike-time-

dependent learning rules, and sequence memory (for contrasting perspectives on how these factors

interact, see Mehta, Lee, & Wilson, 2002 and Jensen & Lisman, 2005).
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Any model that combines hippocampal, perirhinal, and prefrontal networks is going to be com-

plex. The main factor that makes this complexity manageable is the sheer number of constraints

that can be applied to biologically-based models: In addition to constraints arising from behav-

ioral data, we have discussed neuroanatomical constraints (e.g., regarding the connectivity of hip-

pocampal subregions), neurophysiological constraints (e.g., how individual peririhinal neurons are

affected by stimulus familiarity), neuropsychological constraints (e.g., how hippocampal lesions

affect discrimination of studied items and similar lures), and functional constraints (e.g., ensuring

that models of familiarity discrimination have adequate capacity when they are given a “brain-

sized” number of neurons). In the future, neuroimaging data will also serve as an important source

of model constraints (see, e.g., Deco, Rolls, & Horwitz, 2004 and Sohn, Goode, Stenger, Jung,

Carter, & Anderson, 2005 for examples of how models can be used to address neuroimaging data).

Another important factor with biological models is the models’ ability to create crosstalk be-

tween different types of constraints. For example, adjusting the model to better fit neurophysio-

logical data may alter the behavioral predictions generated by the model, and adjusting the model

to fit both the neurophysiological data and the behavioral data may alter the overall capacity of

the network for storing patterns. Even though there may be multiple, qualitatively different ways

to explain these different types of findings in isolation, it seems unlikely that there will also be

multiple different ways to explain all of these different types of findings taken together.

Finally, insofar as the brain systems involved in episodic memory also contribute to other forms

of learning, it should be possible to use data from these other domains to constrain the episodic

memory models discussed in this chapter. In particular, as mentioned in Section 2, the cortical

network involved in familiarity discrimination also plays a key role in extracting the statistical

structure of the environment, and thus should contribute strongly to semantic memory (see the

chapter by Rogers in this volume), categorization (see the chapter by Kruschke in this volume),

and forms of implicit learning (see the chapter by Cleeremans in this volume). Raaijmakers and

Shiffrin (2002) discuss how it is possible to apply REM to implicit memory and semantic memory
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data. Also, several researchers have argued that the hippocampus plays a key role in training up

semantic memory by playing back new information to cortex in an “off-line” fashion (e.g., during

sleep); for models of this consolidation process see Alvarez and Squire (1994) and Meeter and

Murre (in press).

Medial temporal lobe structures involved in episodic memory have also been implicated in sim-

ple incremental learning tasks that have been used in animals and humans (e.g., discrimination

learning and conditioning). For discussion of ways in which the CLS model can be applied to

discrimination learning and conditioning, see O’Reilly and Rudy (2001); see also Gluck, Meeter,

and Myers (2003) and Meeter et al. (2005) for additional discussion of convergences between

episodic memory, discrimination learning, and conditioning. Lastly, the hippocampus and sur-

rounding cortical structures play a key role in spatial learning; for discussion of models that relate

spatial learning and episodic memory, see Burgess, Becker, King, and O’Keefe (2001).

In summary: Episodic memory modeling has a long tradition of trying to build comprehensive

models that can simultaneously account for multiple recall and recognition findings. So long as

future modeling work carries on with this tradition, and modelers continue to apply all available

constraints to theory development, we should continue to see steady progress toward a complete,

mechanistic account of how the brain stores and retrieves episodic memories.

Appendix A: CLS Model Details

This appendix (adapted from Appendix A and Appendix B of Norman & O’Reilly, 2003) de-

scribes the computational details of the Norman and O’Reilly (2003) CLS model simulations. See

Norman and O’Reilly (2003) for additional details and references.
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Pseudocode

The pseudocode for the algorithm is given here, showing exactly how the pieces of the algorithm

described in more detail in the subsequent sections fit together. The algorithm is identical to the

Leabra algorithm described in O’Reilly and Munakata (2000; O’Reilly, 1998), except the error-

driven-learning component of the Leabra algorithm was not used here.

Outer loop: Iterate over events (trials) within an epoch. For each event, let the pattern of

network activity settle across multiple cycles (time steps) of updating:

1. At start of settling, for all units:

(a) Initialize all state variables (activation, v_m, etc).

(b) Apply external patterns.

2. During each cycle of settling, for all non-clamped units:

(a) Compute excitatory net input (ge(t) or ηj, Equation 18).

(b) Compute k-Winners-Take-All inhibition for each layer, based on gΘ
i (Equation 21):

i. Sort units into two groups based on gΘ
i : top k and remaining k + 1 to n.

ii. Set inhib conductance gi between gΘ
k and gΘ

k+1 (Equation 20).

(c) Compute point-neuron activation combining excitatory input and inhibition (Equa-

tion 16).

3. Update the weights (based on linear current weight values), for all connections:

(a) Compute Hebbian weight changes (Equation 22).

(b) Increment the weights and apply contrast-enhancement (Equation 24).
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Point Neuron Activation Function

Leabra uses a point neuron activation function that models the electrophysiological properties

of real neurons, while simplifying their geometry to a single point.

The membrane potential Vm is updated as a function of ionic conductances g with reversal

(driving) potentials E as follows:

dVm(t)

dt
= τ

∑

c

gc(t)gc(Ec − Vm(t)) (16)

with 3 channels (c) corresponding to: e excitatory input; l leak current; and i inhibitory input.

Following electrophysiological convention, the overall conductance is decomposed into a time-

varying component gc(t) computed as a function of the dynamic state of the network, and a constant

gc that controls the relative influence of the different conductances. The equilibrium potential can

be written in a simplified form by setting the excitatory driving potential (Ee) to 1 and the leak and

inhibitory driving potentials (El and Ei) of 0:

V ∞

m =
gege

gege + glgl + gigi

(17)

which shows that the neuron is computing a balance between excitation and the opposing forces

of leak and inhibition.

The excitatory net input/conductance ge(t) or ηj is computed as the proportion of open excita-

tory channels as a function of sending activations times the weight values:

ηj = ge(t) = 〈xiwij〉 =
1

n

∑

i

xiwij (18)

The inhibitory conductance is computed via the k-Winners-Take-All function described in the next

section, and leak is a constant.
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Activation communicated to other cells (yj) is a thresholded (Θ) sigmoidal function of the

membrane potential with gain parameter γ:

yj(t) =
1

(

1 + 1
γ[Vm(t)−Θ]+

) (19)

where [x]+ is a threshold function that returns 0 if x < 0 and x if X > 0. This sharply-thresholded

function is convolved with a Gaussian noise kernel (σ = .005), which reflects the intrinsic pro-

cessing noise of biological neurons.

k-Winners-Take-All Inhibition

Leabra uses a k-Winners-Take-All (kWTA) function to achieve sparse distributed representa-

tions (c.f., Minai & Levy, 1994). A uniform level of inhibitory current for all units in the layer is

computed as follows:

gi = gΘ
k+1 + q(gΘ

k − gΘ
k+1) (20)

where 0 < q < 1 is a parameter for setting the inhibition between the upper bound of gΘ
k and the

lower bound of gΘ
k+1. These boundary inhibition values are computed as a function of the level of

inhibition necessary to keep a unit right at threshold:

gΘ
i =

g∗

e ḡe(Ee − Θ) + glḡl(El − Θ)

Θ − Ei

(21)

where g∗

e is the excitatory net input without the bias weight contribution — this allows the bias

weights to override the kWTA constraint.

In the basic version of the kWTA function used here, gΘ
k and gΘ

k+1 are set to the threshold

inhibition value for the k th and k + 1 th most excited units, respectively. Thus, the inhibition is

placed exactly to allow k units to be above threshold, and the remainder below threshold. For this

version, the q parameter is set to .25, allowing the k th unit to be sufficiently above the inhibitory
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threshold.

Hebbian Learning

The simplest form of Hebbian learning adjusts the weights in proportion to the product of the

sending (xi) and receiving (yj) unit activations: ∆wij = xiyj. The weight vector is dominated by

the principal eigenvector of the pairwise correlation matrix of the input, but it also grows without

bound. Leabra uses essentially the same learning rule used in competitive learning or mixtures-of-

Gaussians (Rumelhart & Zipser, 1986; Nowlan, 1990; Grossberg, 1976), which can be seen as a

variant of the Oja normalization (Oja, 1982):

∆hebbwij = xiyj − yjwij = yj(xi − wij) (22)

Rumelhart and Zipser (1986) and O’Reilly and Munakata (2000) showed that, when activations are

interpreted as probabilities, this equation converges on the conditional probability that the sender

is active given that the receiver is active.

To renormalize Hebbian learning for sparse input activations, Equation 22 can be re-written as

follows:

∆wij = ε[yjxi(m − wij) + yj(1 − xi)(0 − wij)] (23)

where an m value of 1 gives Equation 22, while a larger value can ensure that the weight value

between uncorrelated but sparsely active units is around .5. In these simulations, m = .5
αm

and

αm = .5 − qm(.5 − α), where α is the sending layer’s expected activation level, and qm (called

savg cor in the simulator) is the extent to which this sending layer’s average activation is fully

corrected for (qm = 1 gives full correction, and qm = 0 yields no correction).
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Area Units Activity (pct)
EC 240 10.0
DG 1600 1.0
CA3 480 4.0
CA1 640 10.0

Table 1: Sizes of different subregions and their activity levels in the model.

Weight Contrast Enhancement

One limitation of the Hebbian learning algorithm is that the weights linearly reflect the strength

of the conditional probability. This linearity can limit the network’s ability to focus on only the

strongest correlations, while ignoring weaker ones. To remedy this limitation, a contrast enhance-

ment function is used that magnifies the stronger weights and shrinks the smaller ones in a para-

metric, continuous fashion. This contrast enhancement is achieved by passing the linear weight

values computed by the learning rule through a sigmoidal nonlinearity of the following form:

ŵij =
1

1 +
(

θ
wij

1−wij

)

−γ (24)

where ŵij is the contrast-enhanced weight value, and the sigmoidal function is parameterized by

an offset θ and a gain γ (standard default values of 1.25 and 6, respectively, are used here).

Cortical and Hippocampal Model Details

The cortical model is comprised of a 240-unit input layer (with 10% activity) that projects (in

a feedforward fashion) to a “perirhinal” layer with 10% activity. Each perirhinal unit receives

connections from 25% of the input units. The number of units in the perirhinal layer was set to

1,920 in some simulations and 240 in other simulations.

Regarding the hippocampal model: Table 1 shows the sizes of different hippocampal subregions

and their activity levels in the model. These activity levels are enforced by setting appropriate k

parameters in the Leabra kWTA inhibition function. As discussed in the main text, activity is much
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Projection Mean Var Scale % Con
EC to DG, CA3 .5 .25 1 25
(perforant path)
DG to CA3 .9 .01 25 4
(mossy fiber)
CA3 recurrent .5 .25 1 100
CA3 to CA1 .5 .25 1 100
(Schaffer)

Table 2: Properties of modifiable projections in the hippocampal model: Mean initial weight strength,
variance of the initial weight distribution, scaling of this projection relative to other projections, and percent
connectivity.

more sparse in DG and CA3 than in EC.

Table 2 shows the properties of the four modifiable projections in the hippocampal model. For

each simulated participant, connection weights in these projections are set to values randomly

sampled from a uniform distribution with mean and variance (range) as specified in the table.

The “scale” factor listed in the table shows how influential this projection is, relative to other

projections coming into the layer, and “percent connectivity” specifies the percentage of units in

the sending layer that are connected to each unit in the receiving layer. Relative to the perforant

path, the mossy fiber pathway is sparse (i.e., each CA3 neuron receives a much smaller number of

mossy fiber synapses than perforant path synapses) and strong (i.e., a given mossy fiber synapse

has a much larger impact on CA3 unit activation than a given perforant path synapse). The CA3

recurrents and the Schaffer collaterals projecting from CA3 to CA1 are relatively diffuse, so that

each CA3 neuron and each CA1 neuron receive a large number of inputs sampled from the entire

CA3 population.

The connections linking EC in to CA1, and from CA1 to EC out, are not modified in the course

of the simulated memory experiment. Rather, these connections are pre-trained to form an invert-

ible mapping, whereby the CA1 representation resulting from a given EC in pattern is capable of

re-creating that same pattern on EC out. CA1 is arranged into eight columns (consisting of 80

units apiece); each column receives input from three slots in EC in and projects back to the cor-
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responding three slots in EC out. See O’Reilly and Rudy (2001) for discussion of why CA1 is

structured in columns.

Lastly, the model incorporates the claim, set forth by Michael Hasselmo and his colleagues, that

the hippocampus has two functional “modes”: an encoding mode, where CA1 activity is primarily

driven by EC in, and a retrieval mode, where CA1 activity is primarily driven by stored memory

traces in CA3 (e.g., Hasselmo & Wyble, 1997). To instantiate this hypothesis, the scaling factor

for the EC in to CA1 projection was set to a large value (6) at study, and the scaling factor was set

to zero at test.
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